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LETTER TO THE EDlTOR 

The Poisson bracket for g-deformed systems 

Sergei V Shabanovtt: 
Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5. Bern, CH 3012, 
Switzerland 

Received 4 June 1992 

Abstract. I t  is shown that the quantum system of vdeformed oscillators with the Uq(n) 
p o u p  symmetry can be obtained by the canonical quantization of a classical system 
with a modified Poisson bracket. The modification of the Poisson bracket is connected 
with a non-canonical transformation of phase space variables. In this approach, the 
deformation parameter turns out to be a function of the Planck mnstant and some 
dimensional parameters characterizing the classical system. 

The idea to associate the qdeformed oscillator [l-31 with the non-standard 
Heisenberg commutation relation [4] attracts much attention [5-71. In this approach, 
the parameter of the q-deformation becomes a function of physical constants 
characterizing a considered system [6 ] .  In the present letter we consider a quantum 
sptem of oscillators with the U,(n)  group symmetry. The qdeformed universal 
enveloping algebra U,(n) [8,9] is realized by operators being functions of the 
standard canonically conjugated variables satisfying the Heisenberg commutation 
relations. The parameter of the q-deformation turns out to be a function of the 
Planck constant, the oscillator frequency and a fundamental length that determines 
the volume of the configuration space of the system [lo]. Having the quantum 
theory with the standard canonical variables, we take the classical limit in accordance 
with the rule of canonical quantization, -ih-'[,] - {,] as h -+ 0, and obtain the 
Poisson bracket {, } of the 'q-deformed' holomorphic variables corresponding to the 
q-deformed creation and destruction operators. The latter allows us to establish the 
U,(n) Poisson bracket structure in the classical theory. We observe that the q- 
deformed canonical variables are connected with usual phase space variables through 
a special non-canonical transformation. Based on this, we state that the q-deformation 
can be associated with non-canonical transformations. 

The q-bosonic oscillator realization of U , ( ~ L )  is given by the following 
generators 191: 

(1) 
d i = N i - N i + '  i = 1 , 2 ,  ..., 7 1 - 1  (2) 

e . .  = ata. i # j = 1,2 ,..., n '3 I I  

n 

d = N = x N ;  (3) 
;=I  

t Permanent address: Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Head post 
Office, PO Box 79. Moscow. Russia. 
t E-mail address: shabanovQtheor.jinrc.dubna.su 

0305-4470/92R21245+06~7.50 @J 1992 IOP Publishing Ltd L1245 



L1246 Letter to the Editot 

where 

and [ a i , a j ]  = [at,a:] = 0 and q is assumed to be a real number. It is easy to be 
convinced that 

[ N i , a j ]  = -a i&. .  11 [ N i , a f ]  = a th i ,  (5 )  

i.e. N, is the number operator. 
Consider a simple transformation of the algebra (4), namely 

bi = qN*f2 a i  b t  = a tqN*f2 ,  (6) 

b . b t  * J  - q26.jb+b. J i = 6 . .  IJ 

The operators (6) satisfy the commutation relations 

[b.  1 '  b.] J = [bt-,b:] = 0 (7) 

and 

The generators of Uq(n )  can be written via the operators (6), 

e . .  = &btbjqN*1f2  N . .  ' J  = Ni + N, : I  

and di ,  d keep their form (Z), (3) with N, being defined by (8). Macfarlane [3] 
proposed a representation of. the algebra (7) (for one degree of freedom) in the 
space of functions of one real variable. Below we will use this represenatation. 

Let us suppose now that the operators bi and b t  are the destruction and creation 
operators, respectively, for a system of n quantum q-deformed oscillators. We restore 
the Planck constant in the right-hand side of (7). hij + hhi,. The system of 
n usual nun-inieraciiiig wiiiaiun WLLII qua i  ~ r y u c i i w c b  iiiw iiic U ( T L ,  syyuurcriy 
generated by the operators (1)-(3) with q = 1. This means that the Hamiltonian 
H = hw btb,-hwn/Z, where w is the frequency, commutes with all the generators 
of U ( n ) .  As has been noted in [ll],  there is no system of TI non-interacting q- 
deformed oscillators with the U q ( n )  symmetry. The reason is simple: the free 
Hamiltonian H = h w z  btb, - b n / Z  does not commute with the generators eil 

we wish to keep the q-analogy of the U( n )  symmetry after the qdeformation of all 
oscillators, we have also to modify the Hamiltonian. 

The operator H ,  = hw( N - n / 2 )  commutes with all the generators of U,( n). 
We can take it as the U,(n)-invariant Hamiltonian because it coincides with the free 
Hamiltonian in the limit q 3 1. In this case, just a self-interaction of each oscillator 
appears due to the non-linearity of the relation (8). However, a priori there is no 
restriction for choosing the Hamiltonian, except the requirement for its behaviour 
in the limit q - 1. So, a non-linear function H ,  = H,(N) Can also serve as the 
U,(n)-invariant Hamiltonian if H ,  - H as q 1. The latter leads to an interaction 

_._ : __..... :-- _..:I, .___^ ... 2.L --..- 3 I ^_.^^ L"" .LA ,,,.., &_. 

nf UT:.: rsd, hesce, is specm-m has. the blnke!! L!,(n) syymym.etr. T!Eefnre, If 
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of oscillators. Note that the operator H ,  = tw( N - n/2) has the same spectrum as 
the Hamiltonian of n usual oscillators. We shall not choose a concrete form of the 
Us( n)-invariant Hamiltonian. 

Physicists have made a 'deformation' of fundamental physical laws several times. 
For instance, relativistic as well as quantum mechanics can be considered as 
deformations of classical mechanics with the deformation parameters u / c ,  where 
c is the light velocity, and S / h ,  where S is an action of a system, respectively. 
It is believed that the deformation parameter q should be associated with a new 
fundamental dimensional constant like c or h.  Below we show how to realize this 
program for a system of bosonic q-oscillators. 

Consider the following representation of the operators (7) [3, IO]: 

where 

[ij, pk] = ih6,, 

and, therefore, [lo] a& = h( 1 - q2)- ' ,  

9 = eXP ( -  $) 
with I ,  being a dimensional parameter (a fundamental length). The opearators (9) 
are conjugated to each other in the Hilbert space of functions of TI real variables xi 
if % .  3 = zj and Ck = -iha/az, [3]. 

The equalities (9) define the q-deformed canonical variables via the usual ones 
obeying the standard Heisenberg commutation relations (10). This allows us to 
mnstruct the corresponding q-deformed classical theory with the Poisson bracket on 
the phase space of commutative variables (z,, p j ) .  We can achieve this by taking 
tine iormai ciassicai iimit h - 0 for the q-deiormed canonicai variabies (9 so that 
the opearators i j  , become the usual commutative canonical variables z . , p j .  
Note that q -+ 1 as fi - 0 and, hence, the q-deformed canonical variables (9) are 
also commutative in the classical limit. So, we arrive at the classical theory with the 
non-ordinary canonical variables [IO] 

where we take into account a& - wLi/2 as h - 0. 
One should s t res  that the formal limit ti - 0, inspired by the rule of the canonical 

quantization, -ih-'[j.j, - { z j  , pt) as h + 0 (I ,  } is the Poisson bracket), cannot 
be considered as a well founded way of derivation of the classical theory because 
the operators (9) have a rather complicated dependence on h. It is necessary to 
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consider more carefully a semiclassical approximation of the q-deformed theory in 
the representation (9). This has been done in [lo] by investigating the semiclassical 
limit of the path integral for the transition amplitude (zI exp(-itfI,/h)lz') where 
A, = H,(  b+ , b) .  In this approximation, the quantity H ,  = N (b' , b) ,  where b' , b 
are defined by (12). plays the role of the classical Hamiltonian [lo]. Because of thii 
property, we can identify the variables (12) with the classical limit of the operators (9). 

There is another feature of the '4-deformed' classical theory, which cannot be 
directly observed in the formal limit h - 0 but it naturally appears in the path- 
integral approach. It is the compactification of the configuration space [lo]. This 
means that zj take their values on the interval 0, = [-7r19/2, rl,/2] with the 
identified boundary points i r l q / 2 ,  i.e. xj E S' (a circle). When the 'volume' of the 
configuration space tends to infinity, 1, -+ 00, the variables (9) and '(12) as well turn 
into the usual canonical ones. 

Another way to establish the correspondence between (12) and (9) is to consider 
the canonical quantization of the variables (12), i.e. to change the canonical variables 
X j >  Pj by the operators with the commutation relation (10). The operator ordering 
problem can be solved with the help of the requirement (6;). = 6, where bj is 
the operator obtained by the substitution zj , p, - xj , fi, into the classical quantity 
bj (12). It is easy to see that 

Therefore, putting 

we obtain the quantum theory with the destruction and creation operators obeying 
the algebra (7). 

The equalities (12) determine a non-canonical transformation xi, p j  + X ,  , P,, 

X j  = X,(z,p) = - (bj - b;) Pj = P,(x,p) = & (b j  t bf)  (15) 
I 

J Jz;; 
{ X i ,  P j ) = 6 i j e x p  

where the quantity H ,  can be treated as the classical limit of the operator L N i  and 
defined by the classical analogy of the equality (8)t 

wbTbi=i(P:+w2X!)  = E , ( l - e -  W E , )  , (17) 

The functions H i  have the remarkable properties 

IX. (.-,> " , I  W . l = A . . P .  ~ - 2 3 -  I ( P ; ;  Ifj) = -6;;"2X; (18) 

t Note that for a usual harmonic oscillator, the classical limit means that the eigenvalue of the the 
number operator tends to infinity, N ;  - m, but the operator RUN; turns into the classical oscillator 
Hamiltonian as ti -+ 0, N ,  - m. 
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which allows us to integrate the classical equations of motion [12] because the classical 
Hamiltonian is a function of H = E:=, Hi as has been noted previously. 

Thus, we are convinced that the q-deformed Heisenberg commutation relations 
can be obtained by the canonical quantization, [,] = ifi{,], of phase space variables 
connected with the canonical ones by a special non-canonical transformation. 

The relations (16) and (17) define the symplectic geometry on the phase space 
(Xi,  Pi) with the symplectic form (16). Having the Hamiltonian formalism, one can 
also derive the corresponding Lagrangian formalism with the help of the Legendre 
transformation. 

Finishing our discussion, we give the explicit Poisson bracket structure of the 
generators of U,(n) . We define the generators as the following functions on the 
phase space (Xi, Pi) (or on the phase space of the canonical variables (I;, p i ) )  

e mi . = b ' b .  m J m # j = 1 , 2 ,  . . . ,  n (19) 

(20) 
1 

d, = - ( H .  - H .  ) j = 1 , 2 ,  ..., n - 1  J I t 1  

The commutation relations with respect to the Poisson bracket (16) read 

{e,,, = -. 1 ( 6j,kejk,e-HhIE1 - 6 .  Jk ,e.,ke-HjlEC J ) (22) 

I e j k ?  

{ e j k ,  4 = 0 Idj, d }  = 0 .  (24) 

= -i ( 6 k m  - 6jm - 6km+l f 6jm+l)ejk (23) 

In the case of j = k' or j' = k in the right-hand side of the equality (22), the 
quantity ej . must be treated as b; b, defined by (17). The Hamiltonian, being a 
function o/ H ,  obviously commutes with all the generators (19)-(21). After the 
canonical quantization of (19)-(21), we get the q-bosonic oscillator realization of 
Up( n) (equations (1)-(3)). 

The other examples of classical systems with the SUq(2) Poisson bracket structure 
are considered in [13] (an oscillator with the broken SUy(2) symmetry) and [14]. 

One can introduce the vector fields \$ associated with the generators (19) such 
that V, F = {U, F ]  where CT runs over the set (e i . ,  d j  , d )  and F is an arbitrary 
function on the phase space. Due to the property {V,, V,,] = V{T,,,l guaranteed 
by the Jacobi identity for the Poisson bracket (16). the vector fields V, realize 
a representation of U,(m) in a space of functions on the phase space spanned 
commutative coordinates. 

This work was supported by the Tomalla Foundation. 
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